## SKIN EFFECT

The effective resistance offered by a conductor to high frequencies is considerably greater than the ohmic resistance measured with direct currents (dc). This is because of an action known as the skin effect, which causes the currents to be concentrated in certain parts of the conductor and leaves the remainder of the cross section to contribute little toward carrying the applied current.

When a conductor carries an alternating current, a magnetic field is produced that surrounds the wire. This field continually is expanding and contracts as the ac current wave increase from zero to its maximum positive value and back to zero, then through its negative half-cycle. The changing magnetic lines of force cutting the conductor induce a voltage in the conductor in a direction that tends to retard the normal flow of current in the wire. This effect is more pronounced at the center of the conductor.

Thus, current within the conductor tends to flow more easily toward the surface of the wire. The higher the frequency, the greater the tendency for current to flow at the surface. The depth of current flow is a function of frequency and is determined from

It can be calculated that at a frequency of 100 kHz, current flow penetrates a conductor by 8 mils. At 1 MHz, the skin effect causes current to travel in only the top 2.6 mils in copper, and even less in almost all other conductors. Therefore, the series impedance of conductors at high frequencies is significantly higher than at low frequencies. The figure shows the distribution of current in a radial conductor.

When a circuit is operating at high frequencies, the skin effect causes the current to be redistributed over the conductor cross section in such a way as to make most of the current flow where it is encircled by the smallest number of flux lines. This general principle controls the distribution of current regardless of the shape of the conductor involved. With a flat-strip conductor, the current flows primarily along the edges, where it is surrounded by the smallest amount of flux.

It is evident from the Equation that the skin effect is minimal at power-line frequencies for copper conductors. For steel conductors at high currents, however, skin effect considerations are often important.

## What Is the Skin Effect?

As previously mentioned, the skin effect is where alternating current tends to avoid travel through the center of a solid conductor, limiting itself to conduction near the surface.

This effectively limits the cross-sectional conductor area available to carry alternating electron flow, increasing the resistance of that conductor above what it would normally be for direct current:

The electrical resistance of the conductor with all its cross-sectional area in use is known as the “DC resistance.” The “AC resistance” of the same conductor refers to a higher figure resulting from the skin effect.

As you can see, at high frequencies the AC current avoids traveling through most of the conductor’s cross-sectional area.

### Aanchal Gupta

Welcome to my website! I'm Aanchal Gupta, an expert in Electrical Technology, and I'm excited to share my knowledge and insights with you. With a strong educational background and practical experience, I aim to provide valuable information and solutions related to the field of electrical engineering. I hold a Bachelor of Engineering (BE) degree in Electrical Engineering, which has equipped me with a solid foundation in the principles and applications of electrical technology. Throughout my academic journey, I focused on developing a deep understanding of various electrical systems, circuits, and power distribution networks.